On uniform definability of types over finite sets

نویسنده

  • Vincent Guingona
چکیده

In this paper, using definability of types over indiscernible sequences as a template, we study a property of formulas and theories called “uniform definability of types over finite sets” (UDTFS). We explore UDTFS and show how it relates to well-known properties in model theory. We recall that stable theories and weakly o-minimal theories have UDTFS and UDTFS implies dependence. We then show that all dp-minimal theories have UDTFS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coherence and Uniform Definability of Types Over Finite Sets

We define a notion of a coherent theory, and show that it is sufficient to imply uniform definability of types over finite sets (UDTFS). This gives additional information on the NIP ↔ UDTFS conjecture, discussed in [3] and [1]. We show that dp-minimal theories are coherent in their minimal formulas.

متن کامل

Logic Seminar Fall 2010 Title: Algebraic Fields and Computable Categoricity

The rubric of trees is most commonly appealed to when proving theorems about Turing degrees, yet trees can also be useful when considering constructions on recursively enumerable (r.e.) sets. In this talk I will investigate the use of twodimensional trees in such constructions. A simple example which serves as a model for more complex arguments is the Freidberg Splitting Theorem which states th...

متن کامل

Definability in Substructure Orderings, II: Finite Ordered Sets

Let P be the ordered set of isomorphism types of finite ordered sets (posets), where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite poset P , the set {p, p} is definable, where p and p are the isomorphism types of P and its dual poset. We prove that the only non-identity automorphism of P is the duality ...

متن کامل

Arithmetical definability over finite structures

Arithmetical definability has been extensively studied over the natural numbers. In this paper, we take up the study of arithmetical definability over finite structures, motivated by the correspondence between uniform and . We prove finite analogs of three classic results in arithmetical definability, namely that and TIMES can first-order define PLUS, that and DIVIDES can first-order define TIM...

متن کامل

Recent Advances in S-Definability over Continuous Data Types

The purpose of this paper is to survey our recent research in computability and definability over continuous data types such as the real numbers, real-valued functions and functionals. We investigate the expressive power and algorithmic properties of the language of Σ-formulas intended to represent computability over the real numbers. In order to adequately represent computability we extend the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Log.

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2012